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Monte Carlo Evidences on Finite Sample
Performances of the Simulated Integrated
Conditional Moment Estimator for the Binary
Choice Model
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Abstract In this paper, I propose a simulated integrated conditional moment
(SICM) estimator for the binary choice model. The asymptotic property of
the proposed SICM estimator is explored via Monte Carlo experiment since its
asymptotic theory has not been fully developed. In particular, the SICM estima-
tor is compared with method of simulated moment (MSM) and ML estimators
by adopting a simple parametric distributional setup in the experiment. The ex-
periment results show that the proposed SICM estimator is valid in the sense
that it is consistent and its Monte Carlo variance decreases by 1/n times as the
sample size increases. In particular, it is found that the variance of the SICM
estimator is approximately twice that of the MSM estimator with one simulator.
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1. INTRODUCTION

Recently many simulation based estimation methods have been proposed.
McFadden (1989), Gourieroux, Monfort and Renault (1993), McFadden and
Ruud (1994), Hajivassiliou, McFadden and Ruud (1996) and Bierens and Song
(2012) are related literature. This study proposes another simulation based esti-
mator for the binary choice model. The proposed estimator is also another ap-
plication to exploit the idea of Bierens and Ploberger (1997) in line with Bierens
and Ginther (2001), Bierens and Wang (2012), and Bierens and Song (2012).

The motivation of this study is twofold. One is to propose a simulated inte-
grated conditional moment (SICM) estimator for the binary choice model. SICM
estimation method has been exploited for a special model such as first-price auc-
tion models by Bierens and Song (2012, 2018). In this study, SICM estimation
method is extended to the binary choice model where the dependent variable
is zero or one.! The other is to explore the asymptotic property of the SICM
estimator via Monte Carlo experiments since its asymptotic theory is not fully
established yet. One main reason is that the objective function is not explicitly
differentiable in parameters. For the simple and clear understanding of the dis-
tribution of the SICM estimator in the finite sample, the SICM estimator is com-
pared with other well-known estimators: method of simulated moment (MSM)
and ML estimators. For their comparison, a fixed parametric distribution is used
for the experiment so that the distribution itself can not be a parameter to esti-
mate. It makes the estimation much simpler and the SICM and MSM estimators
can be comparable.”? The mean squared error (MSE) of the SICM estimator is
examined in the experiment to provide a snapshot of the distribution of the SICM
estimator. In particular, the mean squared errors (MSEs) of the SICM estima-
tor, the method of simulated moment (MSM) estimator and the probit estimator
are presented to compare their performance. Unlike the SICM estimator, the
asymptotic property of the MSM estimator has been well established by Mc-
Fadden (1989), and McFadden and Ruud (1994). The MSM estimator has been
used when the computation is very cumbersome even though the true distribu-

'For this extension, one may consider either parametric approach or semi-nonparametric ap-
proach. In principle, either is possible. However, this study adopts parametric approach so that
SICM estimator can be compared with MSM estimator which requires the parametric distribu-
tional assumption.

2The asymptotic theory of SICM estimator becomes more complicated when the distribution
becomes a parameter to estimate as in Bierens and Song (2012). Furthermore, the MSM can not
be applied to the setup in Bierens and Song (2012). Hence, the SICM and MSM estimators can
not be compared in the setup of Bierens and Song (2012).
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tion of the error is known. However, SICM estimation can be applied to the case
where the true distribution of the error is unknown if a semi-nonparametric den-
sity function is used as in Bierens (2008, 2014), and Bierens and Song (2012,
2018).3

The remainder of this paper is organized as follows. In section 2, we show
the identification of the binary choice model when the distribution of the error
belongs to a family of parametric distributions, and propose the SICM estimator.
In section 3, Monte Carlo experiments are conducted to explore the asymptotic
behavior of the SICM estimator, and to compare the SICM estimator with the
MSM estimator. Section 4 has some concluding remarks.

2. BINARY CHOICE MODEL

2.1. IDENTIFICATION

Consider a binary choice model
Y =I1(Y">0)where Y =X'By+V (1)

where the dependent variable Y is binary, By € RX is the true parameter vector,
Y* is a latent variable and I(-) is the indicator function.*

Now I adopt the following standard assumption for the binary choice model.
Assumption 1. (i) Equation (1) holds. (ii) V is independent of X.
The probability of the event Y = 1 given X is
Pr[Y = 1|X] =Pr[V > —X'Bo|X] = 1 = Pr[V < —X'] (2)
and the probability of its complementary event given X is
Pr[Y = 0|X] =Pr[V < —X'By|X] = Pr[V < —X'fo]. (3)

Note the two last equations in (2)-(3) follow from the independence of V and X.

3Strictly speaking, Bierens (2008, 2014) exploit the semi-nonparametric(SNP) ML approach
while Bierens and Song (2012, 2018) exploit SICM approach.
4I(A) = 1if A is true, and I(A) = 0 otherwise.
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Moreover, the following assumption is needed for the parametric identifica-
tion.

Assumption 2. (i) The distribution of V is absolutely continuous with respect
to the Lebesgue measure. Specifically, for a known function G, Pr[V < vy| =
G(vo; 0y) for all vo € R. (ii) The support of X'By is the whole real number R.
(iii) The variance of X, V (X), is positive definite.

We restrict our interest to the parametric model where the distribution of
the error V belongs to a well-known parametric distribution G. Hence, the true
distribution is characterized by a parameter vector 0 as in Assumption 2 (i).

Now, we can easily show that the identification is achieved under Assump-
tions 1-2. Suppose that (8, 0) is observationally equivalent to (3, 6). Then,

PrlY = 1]X] =1-G(-X'B;0) = 1 — G(—X'B;H), and
PrlY = 0|X] = G(—X'B;0) = G(—X'B; ).
Under Assumption 2 (i)-(ii), the same su;port implies
X’E:X'B =t forallr € R.
Then, X'(B — B) =0 and thus (X —EX))' (B - B) = 0. Therefore,
(B-B)V(X)(B~B)=0.
Assumption 2 (iii) implies E = ﬁ Now we have the following relationship
G(s;0) = G(s;0) forall s € R

which implies

|
Il
D

Assumption 2 (i) directly leads to
0=0=0,.

t

The parametric identification approach may look too strong from the point
of nonparametric identification.’ You may consider nonparametric identification

30ne anonymous referee pointed out, this identification is essentially similar to one in Newey
and Mcfadden (1994). Their identification condition is E[XX’] is finite and nonsingular. More-
over, they assume the distribution is standard normal, which is not necessary under Assumption
2.
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for this problem. However, we do not handle nonparametric identification here
since it is beyond the scope of this study.

2.2. SICM ESTIMATION

Following the idea of Bierens and Song (2012), we propose an SICM esti-
mator for the binary choice model. Suppose two errors V and V have their distri-
bution functions G and G respectively. Specifically, Pr[V < v] = G(v) = G(v; 6;)
and Pr[V <v] = G(v) = G(v;0). Let Y; = I(Y;" > 0) where Y/ = X/B +V;, and
17,~ is independent of X;. Recall Y is defined in (1). The idea of SICM estimation
is that the distribution Y given X is equivalent to that of Y given X provided that
Bo = B and G(v) = G(v) for all v € R.5 Recall Y is the actual dependent vari-
able which is associated with 8, and G(v), while Y is the simulated dependent
variable that is associated with 8 and G(v).

If two conditional distribution ¥ |X and Y |X are same, then their conditional
characteristic functions are the same and vice versa. Then,

Elexp(itoY ) — exp(ifgY )|X] = 0 Vip € R (4)
which implies the following moment condition to estimate the parameter f3,.
E[(exp(itoY) — exp(itoY)) exp(it{ X )] = 0 V(1o,1})’ € &, (5)

where X € RK, = = [—7,7] 4K 7> 0is an arbitrary positive real number, and i
is the complex number i =/ —1.
Note that (5) is equivalent to

~ 2

‘E ((exp(itoY) —exp(itY)) exp(it{X)) ‘ =0 VY(to,1]) € E. (6)
Therefore, the population objective function can be defined as

oB) = /_ |E[(exp(itoY ) — exp(itoY ) exp(it; X )] |>dtodt (7)

Accordingly, the sample counterpart of (7) can be defined as
2

0.8)= [ diodty  (8)

& L& - .
<n Z exp(itoY;) — . Z CXp(lton)> exp(if} X;)
=1 =1

®Note Assumption 2 enforces G(v) = G(v) for all v € R.
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when X is bounded. Moreover, it is reduced to the following closed form.
0.(B) = %Xn: Y (W) y (1’51 smr(g-}gx,m__xf(rjn;i)v

()

SRR () () o

Recall the simulated dependent variable ¥ depends on B and G(v). If |X;| is
unbounded, a bounded one-to-one transformation of X;, x;, can be used. The
dependent variables Y and Y are bounded, hence the objective function for the
SICM estimation is

where x},, = arctan ((Xi,m —Xm)/ Sm) is used as a bounded one to one transfor-
mation when the m-th component in X;, X; ,, is not bounded. S,, is the sample
standard deviation of X,,,. T =1 is used in the estimation by following Bierens
and Song (2012).”

Therefore,

Bsicw = argmin 0, (B) (11)
where 0, (B) is defined in (10). Moreover,
Bo= argn}jin o(B) (12)
where

oB) = /: ’E [(exp(iton) —exp(itoyj)) exp(izix;f)} ‘2dt0dt1. (13)

"Note that | arctan()| < /2 for any ¢ € R.
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The consistency of fi sicm can be achieved by applying the uniform law of large

numbers and definitions of (11) and (12).8 Also note QH(B) LN Q(B) follows
from the fact

n
n~ 'Y exp(irY;) exp(ir]x}) L E [exp(itoY1) exp(i|x})] , and
=1

n
n! Y exp(itoY;) exp(ir)x}) L E [exp(itoYl)exp(itix’{)}
j=1
where x] = (x] |,...,x] ¢)'. However, the asymptotic distribution theory of B sicM
is not trivially established since the objective function is not explicitly differen-
tiable in parameters. Therefore, this study aims to provide a snapshot about its
distribution via Monte Carlo experiments.

2.3. MSM ESTIMATION

One well-known simulation based estimator is the MSM estimator by Mc-
Fadden (1989). The distribution of V is known as a distribution function G(v; 8¢).’
Then we can define the MSM estimator for the binary choice model as follows.

3MSM:argInBin (rllil(y P ) ( i )

where B(B) =Prl¥; = 1|X] = 1 Y5 1(¥}, > 0) = 1¥5 | ( . > —X/B) where
f;‘i =X/B+ Vs,,-, and Pr[VsJ <t] = G(t;6y). Moreover, VSJ is independent of
X;. S is the number of simulated errors \7“ from a known distribution G(v; 09),
which are needed to obtain a simulator Pr[Y; = 1|X;]. The asymptotic distribution
theory was well established by McFadden (1989).

The performance of the MSM estimator may depend on the choice of in-
struments W;. To have an idea of optimal instruments, think of the following

80f course, the continuity assumption of Q(B) and the uniqueness of B, are needed. In par-
ticular, the consistency is trivial when the distribution G(-; 6) is known. This case is considered
in this study.

°In general, 6, consists of a location parameter and scale parameter. For example, if
G(v:00) = /", ﬁexp(—O.Stz)dt, then 8y = (o, 07) = (0,1).
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maximum likelihood estimation. Let P(f) = Pr[Y; = 1|X;] = 1 — G(—X'B; 0).
Then, the log likelihood function is defined as

n

logL(B) = Y [YilogPi(B)+ (1—Y)log(1—Fi(B))] .

i=1

The first order condition can be obtained from the log likelihood function, and it
can be used as the moment condition.

IP,(B)
dlogL(B) ¢ y p _
B ERE-rE) " a4

where u;(B) =Y; — P;(B) is treated as an error. It follows from (14) that W, ;(B) =
(0P(B)/2B)/(P(B)(1—PF(B))) are optimal instruments in GMM since those
instruments asymptotically deliver the ML estimator.!” In the Monte Carlo ex-
periment, we will consider two kinds of instruments: one is usual instruments
W, delivering a consistent estimator and the other is the optimal instruments W,.

3. MONTE CARLO EXPERIMENTS

Monte Carlo experiments are conducted to see the validity of the SICM es-
timator for the binary choice model. The true data generating process for the
experiment is

Y = BoXi+V;

where V; ~ .47(0,1), X; ~ &(1) where &(1) is the exponential distribution with
mean 1, and V; is independent of X;. The true value of By = —1. There is no
constant regressor in this setup so that Assumption 2 (iii) can be satisfied.

In the experiment, 1000 replications are conducted. Each replication con-
sists of a sample of n observations, and SICM, MSM and probit ML estimations
are conducted in each replication. We consider n = 500, 1000 and 2000 where
the sample size doubles. In the SICM estimation, T = 1 is used by following
Bierens and Song (2012). In the MSM estimation, S = 1, § = 10, § = 100 and
S = 1000 are considered for the number of simulations per observation. In partic-
ular, we consider two kinds of instruments. In the first case, we use an instrument
W.; = exp(X;) delivering a consistent MSM estimator. In the second case, we

101 practice, we can consider using W(,yi(ﬁ) where B is the estimated value of any consistent
estimator of f,.



96 SICM ESTIMATOR FOR THE BINARY CHOICE MODEL

use the optimal instruments W, ; = o(—B X)X/ ((1 —@(—BCX,-))CID(—ﬁcX,-))

where ﬁc is the estimate of the MSM estimator obtained by using W, ; = exp(X;).!!

The performance of the probit ML estimator is also presented as a benchmark.

Table 1 presents the performance of the SICM estimator. The MSE decreases
as the sample size increases, which confirms that the SICM estimator is consis-
tent. Moreover, notice that the variance of the SICM estimator approximately
halves as the sample size doubles. It implies that the asymptotic variance of the
SICM estimator is well-defined as in usual CAN (consistent and asymptotically
normal) estimators.!?

For comparison, Tables 2-3 present the performance of the MSM estimator
and the probit ML estimator. The MSM estimator shows smaller variance than
the SICM estimator in all three sample sizes. The experiment results in Table 2
suggest that the SICM estimator has a larger variance than the MSM estimator.
It is noticeable that the MSE of the MSM estimator with one simulator (S = 1) is
about half the MSE of the SICM estimator in all sample sizes.'® In other words,
the MSE of MSM estimator with (n,S) = (500, 1) is close to that of the SICM
estimator with n = 1000, and the MSE of MSM estimator with (n,S) = (1000, 1)
is close to that of the SICM estimator with n = 2000.

Table 3 displays the performance of the MSM estimator using optimal in-
struments. In all sample sizes, the MSEs of the MSM estimators using S = 100
are almost the same as those of the probit ML estimators. Table 3 is presented in
the Appendix.

n =500 n = 1000 n = 2000
MSE 0.0305 0.0169 0.0090
Bias -0.0158 -0.0080 -0.0048
Variance 0.0303 0.0168 0.0090

Table 1: EXPERIMENT RESULTS OF SICM ESTIMATORS. 7 =1 is used for the
SICM estimation. In each case, 1000 replications are conducted.

T this sense, the optimal GMM takes the form of two-step estimation in this experiment.

12In other words, v/n(Bgcp — Bo) converges in distribution to a certain random variable whose
variance is well defined.

3Note their MSEs are mainly dependent on their variance since their squared bias is very small.
Moreover, you can notice that the SICM estimator exploits one simulated dependent variable ?j
per one observation Y;.
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S=1 S=10 S =100 S =1000 Probit

(n = 500)
MSE 0.0153  0.0093 0.0088 0.0088 0.0081
Bias 0.0146  -0.0094  -00106  -0.0113  -0.0112

Variance 00151 00092  0.0087 0.0086 0.0079

(n = 1000)

MSE 0.0092  0.0049  0.0044 0.0044 0.0039
Bias 00112 -0.0077  -0.0079  -0.0080  -0.0076
Variance 0.0091  0.0048 0.0044 0.0043 0.0039

(n = 2000)

MSE 0.0044 00024  0.0022 0.0022 0.0019
Bias 20.0036  -0.0021  -0.0033 0.0032  -0.0028
Variance 0.0044  0.0024  0.0022 0.0022 0.0019

Table 2: EXPERIMENT RESULTS OF MSM ESTIMATORS WITH W, ;. S is the
number of simulators for each observation for the MSM estimator. In each case, 1000 replications
are conducted.

4. CONCLUDING REMARKS

In this paper, we propose the SICM estimation for the binary choice model,
and provide a snapshot of the asymptotic behavior of the SICM estimator via
Monte Carlo experiments since the asymptotic distribution theory of SICM esti-
mator has not been well developed.

For the simple and clear comparison, we restrict our attention to the binary
choice model where the distribution of the error term is known. The experiment
results show that the SICM estimator is consistent, and its variance decreases by
1/n times as the sample size increases. In particular, it is found that the variance
of the SICM estimator is approximately twice that of the MSM estimator with
one simulator.

Admittedly, there are some drawbacks with the SICM estimation. As seen
in the experiment results, the dispersion of the SICM estimator is larger than the
MSM estimator. In addition, SICM estimation requires much more computation
time than MSM estimation.

In spite of those limitations, there is still much room for the application of
the SICM estimation. First, the SICM estimator can be used even when the true
distribution of the error is not known. Related to this, semi-nonparametric SICM
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estimation allowing for nonparametric specification for the error in the binary
choice model can be a good complementary alternative to a semi-nonparametric
(SNP) ML estimator as Bierens (2014).'* Second, the SICM estimation can be
used to test the correctness of the functional form by applying the idea of the in-
tegrated conditional moment (ICM) test in Bierens and Ploberger (1997). There-
fore, the correctness of the estimated parameter and specified distribution can be
tested. Even the true distribution is unknown, the correctness of the estimated pa-
rameter and distribution still can be tested by considering a semi-nonparametric
(SNP) distribution in Bierens (2008, 2014).

APPENDIX
S=1 S=10 S=100 S=1000  Probit
(n = 500)
MSE 0.0145  0.0085  0.0081 0.0081 0.0081
Bias 0.0120  -0.0099  -0.0106  -0.0110  -0.0112
Variance 00143  0.0084  0.0080 0.0079 0.0079
(n = 1000)
MSE 0.0085  0.0044  0.0040 0.0039 0.0039
Bias 0.0105  -0.0076  -0.0076  -0.0076  -0.0076
Variance 0.0084  0.0043  0.0039 0.0039 0.0039
(n = 2000)
MSE 0.0041  0.0022  0.0019 0.0019 0.0019
Bias 0.0034  -0.0020  -0.0028  -0.0027  -0.0028

Variance 0.0041 0.0022 0.0019 0.0019 0.0019

Table 3: EXPERIMENT RESULTS OF MSM ESTIMATORS WITH Woi. Sis the
number of simulators for each observation for the MSM estimator. In each case, 1000 replications
are conducted.

14Bierens and Song (2018) is one example.
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